Unfractionated bone marrow cells attenuate paraquat-induced glomerular injury and acute renal failure by modulating the inflammatory response
نویسندگان
چکیده
The aim of this study was to evaluate the efficacy of unfractionated bone marrow cells (BMCs) in attenuating acute kidney injury (AKI) induced by paraquat (PQ) in a mouse model. PQ (55 mg/kg BW) was intraperitoneally injected into C57BL/6 female mice to induce AKI, including renal function failure, glomerular damage and renal tubule injury. Glomerular podocytes were the first target damaged by PQ, which led to glomerular injury. Upon immunofluorescence staining, podocytes depletion was validated and accompanied by increased urinary podocin levels, measured on days 1 and 6. A total of 5.4 × 10(6) BMCs obtained from the same strain of male mice were injected into AKI mice through the tail vein at 3, 24, and 48 hours after PQ administration. As a result, renal function increased, tubular and glomerular injury were ameliorated, podocytes loss improved, and recipient mortality decreased. In addition, BMCs co-treatment decreased the extent of neutrophil infiltration and modulated the inflammatory response by shifting from pro-inflammatory Th1 to an anti-inflammatory Th2 profile, where IL-1β, TNF-α, IL-6 and IFN-γ levels declined and IL-10 and IL-4 levels increased. The present study provides a platform to investigate PQ-induced AKI and repeated BMCs injection represents an efficient therapeutic strategy.
منابع مشابه
In vivo effects of allogeneic mesenchymal stem cells in a rat model of acute ischemic kidney injury
Objective(s): Renal ischemia-reperfusion injury (IRI) as a severe condition of acute kidney injury (AKI) is the most common clinical problem with high mortality rates of 35-60% deaths in hospital. Mesenchymal stem cells (MSC) due to unique regenerative characteristics are ideal candidates for the treatment of the ischemic injuries. This work is focused on the administration of MSC to IRI-induce...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کاملSuccessful Treatment of Monoclonal Gammopathy of Renal Significance With Bortezomib in the Setting of Post- Viral SARs-CoV-2 Infection: Case Report
Introduction: Monoclonal Gammopathy of Renal Significance (MGRS) is an immunoglobulin proliferative disorder that leads to the destruction of the renal glomerular basement membrane and progression to end-stage renal disease. The pathogenesis of MGRS is similar to that of multiple myeloma and chronic lymphocytic lymphoma but lacks criteria for either disease. This inability to characterize the d...
متن کاملThe NF-κB1 is a key regulator of acute but not chronic renal injury
The NF-κB family of transcription factors is important for many cellular functions, in particular initiation and propagation of inflammatory and immune responses. However, recent data has suggested that different subunits of the NF-κB family can suppress the inflammatory response. NF-κB1, from the locus nfκb1, can inhibit transcription, acting as a brake to the recognised pro-inflammatory activ...
متن کاملMacrophage heterogeneity in renal inflammation.
of bone marrow-derived cells to differentiate to glomerular mesangial cells. Extraglomerular origin of the mesangial cells after injury. marrow is a reservoir of repopulating mesangial cells during glomerular remodelling. A, Plati AR et al. Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. Bone marrow transplantation attenuates murine IgA nephropathy: role of ...
متن کامل